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Neal Grossbard, not only for his programming, but for his "boundary condition
free" technlque used (n this report to caloulate KB-FLUX‘ I aiso acknowledge
suggestions from Dr, C. Stergis, Dr, T, Van Zandt, Dr, A, Quesads, J. Brown,
and Dr, J, O'Brien,
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A One-Dimensional Vertical Diffusion Parameter
for Extremely Inhomogeneous,
Layered Turbulence In Stratified Fluids

1, INTRODUCTION

‘Che main motivation for this investigation s the present concern about strato-
spheriec pollution, The stratosphere (s characterized by a high degree of atability,
and turbulence in this reglon occurs in the form of thin, random, horizontal,
pancake-shaped lmyex-l.1 The shear, or Kelvin-Helmholtz, instability {s presumed
to be the mechanlam for the formation of these layera, The nature of thls type of
turbulence i discussed in Rosenberg and Dewan, 1 Dewan (191’9-), and Dewan
(1979\:).3 There are two purposes for the present report, The firat is to overcome
some of the initirl criticisms we roceived (Rosenberg and Dewanl) due to the fact
that we used the term "eddy diffusivity," As will be seen, we will be considering
un entirely new parameter which is, in s sensa, completely different I'rom the
usual eddy diffusion, This new parameter, like eddy diffusion, (s phenomenaological
in nature; however, this is where the similarity ends, To explain the new param-
eter, this report shall make use of an analcgy between the random layer mixing

(Recelved for publication 13 June 1980)
1. Rosenberg, N,W. and Dewan, E.M, (1975)&%&%%
rtienl Effertive Ditfusion Coefficient, 3] 701.
2, Dewan, E,M, (1979a) Eat{ ”l!!ﬂj gg Eert%cué %ﬁﬁi err?uton gue to Turbulen
Layers in the Stratosphere

3, Dewan, E.M, (1979b) Mixing .
Diffusion, AFGL-TK-T5-0001, AD AOT4 400,

a3t p

5 N o Db shtae 205 Rtk

Sar bR e min G e




process mentioned above and the finite difference formalism usded to numerically
simulate the diffusion equation, That such an analogy exists may surprise some
readers; nevertheless, it represents a good way to convey the physics of the proc-
ess, This report's se~ond purpose is to demonatrate that our new parameter (s
indeed a self-consiatent, "ditfusion like'" parameter., This will be achieved by
means of a series of digital computer simulationa,

The usual eddy diffusion parameter (eddy diffusion coefficient) for turbulence
transport assumes that, at least as a practical approximation, the turbulence (s
easentially homogeneous in some sunse, Palqulll‘ defines eddy diffusivity, K, as

Kmvi (1

where v and £ are the velocity and size scale lengths, respectively, which are
appropriate for the turbulence in queation, Another form to be found in the literas
ture (Lilly et al, 8 Panofsky and Hecka) in

K l-;;‘Lr (2)

B
where ¥ ls the average eddy dissipation rate and NB im the buoyancy frequency,

L1 Amumptions and Definition of *Bulk Diffusivity"

We shall assume that (@) the turbulent layers occur at random hoights and at
random timea (this assumption is usually made in the context of stable luids,
see for e]tlmple, Panofsky and Heck, 8 Lilley et al, 8 Woods, 7 and Woods and
Wlleya). (b) there s no vertical tranaport outside of the turbulent luyers (in other
words, between layers, motlon is regarded as laminar), and (c) within the mixing
layers, the mixing ls presumed to be total, Regarding thia last asaumption, it
remmains to bo proven correct! on the other hand, certain experimental obaervations

4. Pasquill, F. (1974) Atmospheric Diffueion, 2nd Ed., John Wiley & Sona,

8, Lilly, D.K., Waco, D, E., and Adelfang, 8,1, (1878) Stratospheric mixing
eatimated from high altitude turbulence measurements by using ermrgiz'k
budget techniques, ‘al St , CIAP Monograph 1,
Final Report, DOT«TST«T0+31, pp. 8=-81 to =80,

6, Panolsky, H,A, and Heck, W, (1875) Stratospheriec mixing estimates from
heat flux measurements, The mﬁhﬁﬁé §tr%t?gphg;g ol ;511, CIAP Mono-
graph 1, DOT=T8T«76=81, pp, 6-00 to G-0a.

7. Woods, J.D, (1968) Wave=induced shear ingtability in the sunimer thermo-

cline, J, Fluid Mech, 32:781-800,

8, Woods, J,D, and Wiley, R, L., (1872) Billow turbulence and ocean micro=
atructure, Deep Sea Research and Qceanic Abst, 10187-121,
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have been made which are consistent with it, These are the temperature-profile
studies o! Mantis and Peppin, o who note that balloon-borne sensors indicate that
in the lower stratosphere and upper troposphere there are regions of nearly
adlabatic lapse rates, Analogously, in the upper ocean where the stability situa-
tlon {8 very much like the stratosphere, Woods and Wlley8 have reported step-
like structures in the vertical temperature profiles, Such profiles are consistent
with the hypothesis that total mixing can result from the turbulent layers, Filnally,
one more assumption {8 needed: (d) there is enough horizontal homogeneity so that
a one-dimenaional vertical trunsport model will be adequate,

In the next section, the mechanism for vertical transport by means of random
mixing layers will be explained, At this stage, however, the assumption that total
mixing takes place can be used to suggest (by means of a dimensaional argument)
that any effective !"bulk diffusion coefficlent," which parameterizes layered turbu-
lence, could not be appropriately described by Eqs, (1) or (2). The argument is
based on the fact that the width of the layer and the time intervals between layer
formautions would determine the transport, These parameters do not explicitly
appear in Eqs, (1) or (3), and unless there were a proven connection, say, between
NB and the time interval between new random layer profiles, it ie not at all clear
that Eqs, (1) or (2) could be useful in the present context. On the other hand, the
parameter to be developed here will explicitly depend on layer thickness, A, and
the relevant time interval, At,

Belfore proceeding further, |t is essential to precisely define KB' the bulk
vertical diffusivity parameter. Let F designate the average flux of material
through a given slab of stable fluld, Thias slab is assumed to be very much larger
than the largest turbulent layera, Let ¢ designate a scalar quantity, such as poten-
tial temperature or mixing ratio of some neutrally buoyant substance (for example,
pollutant), Then

K

B "o “

where the overbar deslgnates an average, ‘Thims definition is based on Fourler's
heat transaport equation (¢cf. Dewan® as well as Panolsky and Heckﬁ).

9, Mantis, M. T, and Pepin, T.J, (1871) Vertical temperature structure of the
free atmosphere at mesoscale, J, Geophys, Res, 20:8021-8628,

¥
3
1
!
-':l
|
i
i
i
]
J

e e e e et D

v ——————— =n




2. THE MECHANISM OF TRANSPORT BY MIXING LAYERS

Figure 1 depicts a slab of stable atmoaphere, and within the slab is located a
single turbulent layer, As previously mentioned, we assume that no vertical
transport exists outside of such a turbulent layer, but let us temporarily add one
more assumption: (e) the layer remains fixed at one altitude, We ask the quea-
tiont "What is the flux, F, between polnta ¥ and Z, located at the top and bottom
of the slab, respectively?" Obvicusly, there will be no transport of material from
point Y to Z, Equation (3) therelore implias K.B « 0, mince there F is to be inters
preted as a flux from polnt Y to point Z, We have an analogy here with the situa-
tion in which there {m an electrical conductor located between two reglons of insula-
tion, One cannot average the conductivity of the "sandwich," One is loft with a
nonconductor (in the vertical), no matter how low the resistance of the conductor
inalde may be., These considerations imply that the intensity of turbulence (once
total mixing (s assumed) is of no direct relevance, and that, as will be made more
cleat below, the temporal behavior of the layars (s absolutely crucial for tranaport
elfects.

Next consider Figure 2, Here we conslder a temporal sequence of layer for-
mation. Layer I is the first to form, Total mixing takes place, and then the
turbulence decays in time, Due to the gradient of ¢ which is indicated, the mixing
causes material in the upper half (A) of the layer to move Into the lower half (B) of
the layer. Next, imagine Layer Il to form, and notice that Layer II significantly
overlaps the original position taken previously by I, When 1l has mixed, the profile
of ¢(z) would agein be altered to a single average value within the layer, ‘This i»
due to the assumption of total mixing, This process would result in a Mrther net
tranafer of ¢ (for example, material) downward, It should be clear that some
material which wan initially near the top of Layer I (for example, in region A) can
find its way, at the end of this two=fold mixing proceas, to & point near the bottom
of Layer Il, This simple example demonstrates the essential mechanism for ver=-
tical transport by means of a random sequence of mixing layers {n an otherwlae
stable fluid (all other Mow being laminar and horizontal), Such a process cun
eventually give a net flux from the top to the bottom of the slab, Notlee that there
are two conditions needed for the mechanism to functiont (a) a large amount of
mixing within the layer, and (b) an overlap of layer positions,

Atter the random formation of turbulent layers in the above fashion, one could
calculate an average flux F across the slab, as well as 8¢/8%2. Kp could then be
calculated from Eq, (3), In Rosenberg and Dewanl and Dewan, e it was shown
that one can calculate an estimate for Ky (designated here as KB-CALC) Lf one
assumes, among other things, a steady state, This will be discussed in the
Appendix, 'The result is
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Flgure 1, Single Stationary Mixing Layer Within a Slab of Atmosphere, No
transport in this case
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Figure 2, Mechanism of Vertical Transport by Sequence of Qverlapping Mixing
Layers in the Presence ol a (iradlent

11

© RV s AT

e e b e Y

o

Ci gt

il doreind i

SR B, v B i it o R ke s = e

7

S st e e

2R aad, tta,




ey

7D S a0 s R v e e

e L B i

RIS G N s T RABINARSEA YRR M WA

n o2
2
Kp.caLc "B oy | @

where A s layar thickness, the overbar {8 an average, and Aty s the average
time interval between layer formations overlapping the bottom boundary of the
slab (or any preset altitude, for that matter), Equation (4) is based on Eq. (3),

3. RANDOM MIXING AS A STOCHASTIC STIMULATION OF THE
DIFFUSION EQUATION

The diffusivity given by Eq. (4) {8 new (as of Rosenberg and Dewanl), end
before it can be fully accepted as valld, {t must be shown to be sell-conaistent, In
other words, the question remeins as to whether or not random mixing layer trans~
port, as estimated from Eq, (4), im diffusive in nature in the sense that one could
use the same KB to describe the transport effects on any (nitial distribution of
&(z). In additlion, it {s easentlal to establish K:B oh & more reliable physical/
mathematical bagis than has been done heretofore, The remainder of this paper
will be devoted to these objectives, and the purpose of the present mection ia to
connect the random mixing layer process to the finite difference formulation of the
diffusion equation. (This analogy was mentioned previously in the introduction,)

it is well known that {f one winhes to simulate a Laplacian, Vaw, by means o!
a finite-difference num.erical scheme, one averages a given lattice point with all
ol its nearest neighbors, ai | replacea the original value at the given lattice point
with this average, This prucess is repeated for each time step, Now consider the
effect of a mixing layer, In effect, the layer averages the values of ¢(z) within its

boundariea and replaces these original values with the average (see Figures 1 and 2),

This leads to the ldea that random turbulent layers in a stable fluid could stochaa«
tically simulate the one~dimensional diffusion equation,

In order to make this idea more concrete, we firat consider a specific pattern
of a mixing layer sequence which results in an exact siimulation of the finite differ=~
ence diffusion equation, This pattern will, of course, be extremely regular, and
in this respect, will differ from the random situation postulated for stratifled tur-
bulence, Nevertheless, it will serve to establish an important connection between
the two processes,

Figure 3 shows, in epoch 1, a vertical set of layers, each in sequence immed-
{ately above the other, They nearly touch, but there {8 no overlap, Thede are to
be imagined as mixing until all pairs of altitude points are averaged (we assume
each layer contains two altitude grid pointa), In principle, these layers would not
have to mix simultaneously, We agsume, however, that the mixing process has

12
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Figure 3. A "Mixing Layer Simulation" of the Fi-
nite Difference Diffusion Equation

terminated at a specific time which designates the end of Epoch 1, After this, the
original layers are replaced by a different set of layers (Time 2 in Figure 3),
which precisely and symmetrically overlap the positions of the original layers, In
other words, the "cracks' between the original layer boundaries are now in the
exact centers of the Epoch 2 layers, These layers then mix and perfofm another
averaging of altitude pairs.

The above double sequence 18 then repreated for each time step, and so on.
We now calculate its effects, Let 2, as usual, designate the altitude, and let Az
be the distance between the vertical points, Lett designate the time, and let At
be the interval of time between steps, Each epoch described above corresponds
to only one=half of a time step, At/2, Thus, for ¢, at the end of Epoch 1, we have

¢(H%s_‘z),¢(t.z)+¢étiz+éﬂ (5)

In other words, ¢ at z, at the end of the firat epoch, equals the average of ¢ taken
at z and z + Az, The mixing layer lncludes both 2 and 2 + Az, the point 2 being
located a distance (1/2){4A2) from the bottom of the layer, while (z + A2) would be
(3/2)(Az) up from the bottom (layer thickness = 2 Az), Next, Epoch 2 of the time
step (Epoch 2 in Figure 3) results in

¢(t+At.z)=dt+-eL,z)+:(tv+i,E'AI) (6)

e Aty e o
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r'- In other words, this time the uverage, or mixing, involves the grid point immed-
{ately helow z (for example, 7 - Az), We now wish to relate ¢ (t + At, 2) to the
original values of ¢ at t, Therelore, inaort Eq, (0) into Eq, (6) to obtain

olt+ At 2) = %- (3d(t, #) + (t, = + Az) + ¢(t, 2 - Av)] (n

Next, we put Eq. (7) into the form of the tinite difference equation a# follows:
firat, the finite time derivative will be defined by

A"%'t"” . Mﬁuﬂm& (8)

and the second spatial derivative (see any book on numerical analysis) will be

4 At

dellned
Qa !?' ) o Ot 2+ Ar) - 26(t, ) + o(t, % - Az) (9)
az and
) Finally, we define K an
| | kw L ton? (10)

Rearranging Eq, (7), and using Eqa, (8), (8) and (10), we obtain

; ’ 4
L8 . x4 (11)
(an)

which s, of course, the finite dilference diffusion equation, (Note the resemblance
between Eqs, (10) and (4),) Thus, the sequence in Figure 3 exactly simulates

Eq, (11). Actually, there are many more sequences which would effectively dc .he
same thing, and the-uniqueness of the process th Figure 3 s merely its simplicity,

The above discuasion carries an important message; namely, that in spite of

the extremely Inhomogeneous and discrete nature of the process, a'"diffunion'
parameter, called K above, has an "exact" connection with the procesa of diffusion,
Luyered turbulence is extremely inhomogeneocua In the vertical direction, It is
difticult to imagine a form of turbulence which s more inhomogeneous in thia

g e

e

i 5 A T TP
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Equatlcm (8) must be modified so that it can be used to be substituted into both
terms In the numerator of Eq. (6),
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resapect, Nevertheless, we find here a way to meaningfully assign a diffusivity to
the procesa.

As was mentioned, layered turbulence in actual [luids would differ from the
above process by virtue of its stochastlc nature: layera would presumably form
at random altitudes, at random times and with random thickness., This leads to
the next question, Could such a random process effectively simulate diffusion in
a manner analogous to the above? Also, would it do so in & consistent manner?

In order to show that the anawers to the obove queations are affirmative, we
shall make several digital simulations of the stochastic mixing process, The
effective values of KB will be determined directly from the aimulated results by
means of a comparison with continuous diffusion theory, We shall see that (a) the
behavior of ¢(z) in time is extremely similar to the predictions ol continuous
theary, and (b) the Kp values inferred Irom the behavior of the simulations are in
surprisingly accurate quantitative agreement with one another.

4, SIMULATION PROGRAM FOR Ky = F/(88/os)

In the following, a digltal program for simulating the effocts of random mixing
layers will be described. More specilfically, a program for ascertaining the value
of Kp on the basis of Eq. (3) (see this section title) will be dlscussed in some
detall, With minor modifications, the same program also provides the simulations
to be given in Section 6, At the [irst reading, gome readers may wish to skip some
of the detalls,

Figure 4 shows the essentinl aapects of how the simulation waa done, A "alab"
of thickness R {# depicted in an "environment" (z = 0 to 2z = max), This slab could,
for example, represent the entire stratosphere or upper ocean, or it could repre-
sent a smaller height region of interest, It is the reglon for which we seek a bulk
value of diffusivity, The renson for the "environmoent” will be explaihed below,
Instde the slab ia a "turbulent” layer of random thicknesn A (at random altitude, 2),
and within such a layer, the values of ¢ would be replaced by the average value
within the layer, The initial value of ¢ is shown, und {t is a straight line with ¢
differing by unity in going from the bottom, B, to the top, A, of the slab, In other
words, the slope of ¢ across the slab {s (1/R), as shown; the same slope continues
throughout the slab's " environment",

The height = is chosen by means of B random~number generator, As for the
thickneas, A, the lollowing procedure was used, A second random numbor gen-
erator (which was Independent from the one uaed for 2) wus used to plck numbera
from 0 to 98, The poasible thickness of layers were 342, bAz, T4z, DAz and
114Az, that is, the layers were to contain from 3 to 11 polnts {(odd only), and in the
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Figure 4, Schematic Repreaentation for Simulation of Vertical Transport Through |
a Slab and the Techniques for Avoidance of Boundary Conditions :

calculations Az = 50 m, The use of odd integers made it possible to have an unam-

biguous center point, and it was this center point that was placed at the point 2

previously selected, The mapping between the numbers 0 to 99 (designated here an
' N) and A s given by Table 1, The distribution of A given by Table 1 is based upon
the results of Rosenberg and Dewan. 1 While there remain same unanswered ques-
tions regarding the accuracy of this distribution at this time, it (s possible to say
that it ls a reasonable one to use for simulation purposes, The actual resulting {
value of KB that will emerge, however, will be, for present purposes, regarded as
arbitrary. In other words, the purpose of this paper is to develop a method of
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describing turbulent tranaport in a atable fluld in general, and its application to
specific data will be done elsewhcre,

Table 1, Distribution of Layer Thickneases A

N Range 7 A
os N = 83 3an
B3« N=T LY.Y
74 < N = 08 Tae
88« N = 02 pAe
Pd < N = 99 114
In Rosenberg and Dewan® and Dewan, 4 yome specific boundary conditions

were used at the top and bottom of the slab, This caused more than one reader to
ralse questions, and it also gave rise to confusion about the mathematics and the
phyalcas of the altuation. For this reason we devised a method that completely
eliminates any boundary conditions, This (s the reason that the slab in Figure 4
i® looated within an "environment''. (The technique was suggested by Neil
QGrosabard, who was also responsible for writing the computer programs used
below.) The random-number generator for » gave values of uniform probability
from 8 4 o to 2 » max. Layers generited outside the slab were not countud by the
program, but all layers within the slab, including any points within, were counted,
This count was used In & manner to be deacribed, The point here is that the layers
outaide the slab served only to ''cause transport" across the boundaries of the
latter In a reasonable manner,

One more problem remained, The environment was finite and therefore it
also had boundaries, Thus, there was the queation ol how to account for the
effects of these boundaries, The "environment'" was chosen to be much larger
than the slab, and the slab itaell was located in the center of the environment, as
indicated, A technique to be described was used to trace the influence of tile bounds
of the environment. This influence propagated toward the slab, and at the inoment
{t reached the slab (if it ever did), the program would automatically terminate,

The following procedure was used to trace the influence of the boundaries ut
2 =0and 2 » max, As soon as a layer was generated which in any way contacted
the boundary, a 'cursor" (shown (n Flgure 4 as an arrow) would be placed ( in
effect) at the edge of this layer which was nearest to the slab, When a subsequent
luyer overlapped the cursor, the latter waas moved again to that layer edge nearest
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to the glab, At the bottom of Figure 4, this has occurred twice, and at the top,
theee times, ‘The number generator would generate numbers exclusively for values
of 2 which were between the upper and lower curasors and the program would ter-
minate {f either cursor came within a distance 114z of the slab, Thus, the bound-
ariea had no effect on the caleulation of flux through the slab,

In order to calculate KB‘ the program, in effect, meaauro-c_i the nux, B, out of
the bottom of the slab, and used Eq, (3), as was mentioned, 8¢$/8z was taken as
R'I. which was juatified tot only from the reasonableness of the assumption of
constant 8¢/8z In a steady state process, but alao by the actual results to be
displayed below (see Figure D Dthrough 1), We now conslder exactly how ¥ s
calculated,

As mentioned, T {8 the amount of "material mixed out'" of the bottom of the
alab per unit of time, The time was calculated by adding | to a register labeled
KOUNT each time a layer included a point interior to the slab, The total time t
was calculated from

t = (KOUN'T) » At (12)

where At {4 the time interval between layer formations within the slab, This
quantity, At, (s to be regarded as the average time betweun layer formations in
the actual altuation which involves random timen for layer formations, but the
exact connection between At and actual measurements will be described below,
The average ux will be the total amount of material (per unit of ares) to exit the
battom of the slab (at the time t) divided by t. How (s the anoutit ol material
mixed out (n one mixing event acrose the boundary to be caleulated? This perhaps
explained most simply by meunu of a spectfic example, Lot the thickness be
A = B Az, and let it be positioned acrose the Jower siab boundary, as shown in
Flgure B, Lot the values of ¢ at the center of each "cell” of the layer be glven as
indicated (n this figure, that (s by d’l to éy Only the two uppesmoat cells will be
within the slab, and the rest will be below, We wiah to caleulate how much mates
rial per unit of area I8 removed from the two upper cellg by the "mixing" ur
averaging process,

The initial amount of materind, M,, in the upper cellg (remoemboering that ¢
here will be a denaity) (s

M, = Adu (o, + %) (13)

where A {u the aren, After the value of ¢ has been made homogencous (within A by
mixing or, equivalently, by averaging) the new amount of matorial in the two top
nolla, Mr, in
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sure 8, Explanation of the Caleulation of by Meann of Flux Out ol the Bottom
! the Slab by Means of a 'Mix«Through" Pro

M, - (AA:)( %) (PR PR PR PR C(14)

The amount of material per unit area passing through the boundary by this mixing
process is given by

M, - M,
DUMP & et (18)

In general, the values of M, and M, would depend upon layer thickness and location,
etc, Each time such an cvent occurred, an amount given by Eq. (18) was added to

a register called DUMP, ‘Thus, DUMP, at any time t, was the total output per unit
aren. The average fux, F, was therefore calculated from

F- BTD%%W (10)
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hence, from KEqs. (16), (3) and BI/Bz = R 7, we obtain
. (DUMP + R ) , m
Kp.rLux ® (5T ROUNT (

where the ‘subindex "FLUX" will distinguish the estimate of KB from others to be

" described below.

~ The actual simulation results trom Eq. (17) will be shown in Section 8, First,
however, soma other methods to estimate KB will be described, The latter are
based on the idea thit solutions to the diffusion squation will depend on a constant
value Ky, which s to say that 1{3 will be independent of initlal or boundary con-
ditions, We shall canaider three apecilic cases and determine (! the estimates of
Kn based upon continuous theory and zimulated behavior is self=conaiatent, These
oases are (a) ¢(2) (nitially is a delta function at the center of the slab, (b} the
initinl ¢(v) interior to the slab is a constant (with respect to &) and the "walls'" are
"held" to a different conatant value higher than the interior value, and (c) ¢{x) ia
& straight line, and the slab boundaries are insulated from the "environment", In
elfoct, K‘B will be eatimated trr nudhos diffusion effects In these three cuses,

3, CALCULATION OF Ky FROM DIFFUSIVE EFFECTS

In this ldotlon, we examine the solutions to the continuous, one-dimensional,
diffusion equation for the purpose mentioned above,

8.1 Delta Funation
The one~dimensional di/fusion equation is

¢ - (18)

The solution in the case where the initial ¢ distribution is a deita function ir woell
known (see Carrier and Pearson, pp. 26-3410). It (s given by

b
8

K

2
«(z=2_)*/(4Kt)
oft, ) = .2_-..-... e o / L))

10, Carrier, Q. F, and Pearson, C, ¥, (1876) Partial Differential Equationw,
Academic Preas, Inc,
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where z, designates the initial location of the delta function. The domain of this
solution 18 - < 7z < w, and there are no boundary conditions. (Equation (18) is
the Green's Anction when the initial condition on ¢(2) in specified.)

Given the behuvior of ¢(x, t) under these conditions, one can estimate K from
the rate of spread in a simple way, that is by messuring the 1/e hallwidth, rg at
a glven time, The latter I8 obtained Irom Eq. (18) by setting the exponent equal
to =1, Solving for K

Kp.DEL A '(%?‘) (20)

(Note that the ""decay,' as used here, (@ spatial, not temporal,) Thus, K can be
estimuted by the amount of spread of the initlal delta function, A refined eatimate
could be obtained by appropriately sombining several such measurements (taken
at a number of timen), This, however, was not done here, Figure 6 shows
schematioally the typical behavior to be expected, that is, the function decreases
{n height and it spreads as time increases,

EARLY

LATE

~
> 1

Figure 8, Schematic Drawing of Delta Function Diffusion Expected
trom Continuous Theory
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3.2 Intrusion from Boundariea

Next we consider the case where we have a slab such that ¢(z, o) = o inside
and ¢(z, 0) = o (a constant larger than zero) outside, We assume (nfinite con-
ductivity outside, and we want to know ¢(a, t) inside (that is, the development of
¢ inside as a function of tlme). Notice that, as wan the case for Figure 6, the slab
is turned sideways, with z going to the right in Figure 7, Figure T(a) shows the
initial condition while Figure T(b) shows schematically how ¢ dilfuses (nwards
from the boundary, The exact solution of Eq. (18) for the semi=infinite slab case
will be found in Splegel, p. 332, 1_1 {(For early times, in our form of simulation,
the (ntrusions from the two sides will not influence each other at all, and therefore
this solution will sultice for our needs,) This sclution im

$(2,t) = ¢ (1 = ertly)) ‘ @

which in Figure 7 would apply only to the left side, The delinitions of y and srf(y)
are :

y (2JRD ' R
and
2 y ua
J{ .~ |
ertly) = T a[ e u (28)

A tabulation of the valuens of erfly) ls to be found in Abramowits and Stegun, p, 311, 12

With this formulation, one can start with a glven ¢(e, t) (from the simulation) and
eatimate K humerically in the following manner, First, y is eotimated via

Hq. (21), from a given é(n,t) for a particular cholce of hoth z and t, Then solving
Eqn (22) for K

kg.anr * () (8 )a (24)

1, Spmgl el, M.R. (1968) Theory and Problems of Laplace Trnnulormn.
aum Publishing Co,

18, Abramowitz, M, and Stegun, [, A, (1864) Handbook of Mathematical Functions,
N.B. 8. Appl. Math. Series 436,
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and since z, t, and (from the tables) y are all known, K can be estimated, The

subscript "INT" stands for intrusion,
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8.3 Insulated Slab—Initially Linear ¢(r,0)
Figure 8 depicts a slab with initial distribution of ¢ given by

¢*a2 (38
where
am ;Q (28)

and the thickneaus of the slab ls given by R and maximum ¢ by $, We assume that
the alab is insulated at the houndaries, therefore

5

Theae boundury conditions are explained in any book on heat conduction, The

e

s 0 (27)

£=0, ¥

R i K o i e e R

analytic solution of Eq. (18) with these conditlons (s (see for example, Dewan®)
= 1.4 o v\ _-K(1/R)%
- n =K(n
plz,t) » LR Tt p n%:l x&,-’-nol (%) e (38)
where g(n) s defined by {
i
0 neven
gn) = (20)
=1 nodd

e R e et Rea I . o .o F . R
By o e deeittbdede s AR AL Trw SRR SIS, O T D .
2 AP YA TS e Ll ix] e TR P e eat o R R W L L E R SR . .
= = ppriflet s e

Deflne the symbol Al(t) to be the amplitude of the firet harmonic of the solution of
Eq, (28), Thus

2
A1) = (-0, 408) o "KI"/RIT (30)

This s obtained from Eq, (28) by setting 2z = o, caloulating 4/1?2 - 0,408, regard=
ing the lactor (1/2) as the zeroth harmonic and setting o © 1 for convenlence from
this point on,

Suppose that we are given ¢(z, t) (from the numerical simulation), and we wish
to caleulate K from this solution, The procedure we shall use is to calculate the
first harmonic numerically, and to thus ascertain A at a given value of t, Then
K can be eatimated by solving Eq, (30) for Ki
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Figure 8, Expected Behavior of Temperature Inside sn Insulated Slab with Initlally
Linear Temperature Proflle, As time passes, the higher harmonica quickly damp
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We now have the means to estimate the bulk diffusion parameter, KB' directly
from solution behavior for the three special cases of Interest. We now turn to the
actual simulsations ol the random mixing layer gituation,

6. CONNECTIONS OF CERTAIN PARAMETER YALUES TO EXPERIMENTAL
DATA AND SIMULATIONS OF MIXING LAYER TRANSPORT

6.1 Relations Betweon Parameters At and A and Posdble Memsurements

Simulations in general can be performed only for numerically specific cases,
In this subsection, we wish to justify that a certaln cholce for At and A 18 a rea~
sonable one in connectlon with atmospheric studies, We also wish to show how
these parameters could be measured in practice,

How could one meagure A, the turbulent layer thickness? One method that has
been employed (Barat”) uses a high-resolution wind fluctuation measuring device
mounted on a balloon, When the balloon descends through a turbulent layver, the
turbulent fluctuations can be detected, and the information telemetered to a ground
station, Such measurements made in the stratosphere indicate that a typical value
of A would be around 200 m,

An elternative measurement technique estimates A from the Richardson num-
ber profiles (Rosenberg and Dewanl). The present model was originally created
for exactly this purpose, (In other words, we neededwa method to convert Rl pro=
files nto estimates of transport,) The Richardson number profiles are ascertained
from measurements of the horizonial winds as a function of altitude, In conjunction
with the vertical profile of the temperature as well, Triangulated rocket-laid smoke
traile {8 the method of choice for high-resolution wind profiles, The estimates of A
can be obtained from the fact that when the Richardson number, R,, 18 less than 0,25,
the layer will, presumably, become turbulent, When account is taken ol subse=
quent spreading of the layer, A can be estimated. According to Rosenberg and
Dewan, 1 A ~ 200 tn |8 a reasonable number as eatimated by this technique, For
further discussion, see Dewan. 2

The parameter At (which stands for ''time between onsets of layer formation"
in the simulations to be given below) is measured less directly, and s tled
methodologically to the method of estimating A, In the case where A 18 measured
13, Barat, J. (1876) Etude Experimentale de la Structure du Champ de Turbulence

dans 1a Moyents STFeTsaphere. C Ho Koad 5. Parle- 700, Sor B e

Bp, BUI-087,
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from R, profiles, the following method {8 appropriate. First (see Rosenberg und
Dewan, © and Dewan,“) we make the simplifying assumption that, if over a certaln
helght region (slab) there are usually several layers detected, then such a precfile
will, on the average, be replaced by ancther profile at a time oty later, } The aub«
index, [, 18 for "time frame", The simplification consiata of veplacing the random
times of layer formatlon by Atr between profiles, Once Rt < 0,28, the layer to be
considered {m unstable; however, a certain time must elapae befora the instability
is replaced by an actual "breakdown' and subsequent turbulence, Shortly alter
the latter oncurs, R, will rlae again above the threshold value (to a valus of 0,7,
perhaps), and the turbulence will begin to decay, At this point, the Rl profile
would no longer Indlcate the subsequent generation of the turbulent layer. Based
upon the measurements of Bruwnlng]"1 of Kelvin-Helmholtz blllows in the atmos-
phere by means of radar and balloon measurements, |l was eatimated (Rosenberyg
and Dewanl) that Atr ~ 1500 I.T In order to ascertaln At [rom Atf. onhe must
first estimate the average number of layers to be found at any time in the slab,
designated below as n, Then

at,
at = —k (32)

If, for example, P* designates the average fraction of the slab of thickness R that
is turbulent, and suppose we are given A, the average turbulent layer thickneas,
then

ns LR (33)
A

from P* m (nA /R).

In the case where the proflle of turbulence ts estimated by means of {n=situ
measurements of velocity fluctuationa, Aty would correspond to the average time
for the average layer to decay (from time of measurement) to the level where it
would be below the "threshold intensity' and would be called laminar, Based upon
this given threelhnld,I P* would be ascertalned (as well as A), and ngain At would
be eatimated from Eqs. (32) and (33). For further discussion, aee Dewan,

TAcgually, Atp would correspond to the average time between the obaervatiun of
R| < 0,25 and breakdown, The latter would depend on growth at time of observa-
tion and Rl‘ )

11t the threshold were hi h, P% would be measured as emall, but so also would Aty
(because the layers would disappear more rapidly below threshold), We asaume
here that the ratio (P*/Atp) remaine Independent of the thresold over a reasonable

range of the latter, _
¥1n this nlmulatlnnm = 277 m, whereas X = 240 m,

14, Browning, K.A, (1867) Structure of the atmosphere In the vicinity of large
amplitude Kelvin-Helmholtz billows, Roy, Met, Soc, Quart, J, 87:283-200,
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6.2 Simulation Results

8.2.1 Kp_prim
Figure 8 (A=C) shows the value of Kp o v, based on Eq. (17), as & function
of time, As the time base (number of "counts" or layer mixing events) inoreases,
Kp.rLux converges to a fixed value, Pnrlmate? were nul!_ned as follows,
R s 400 points, and Az » 80 m; where R = 20 X 10° m, Also, A * 240 m and
A/ K! = 277, as determined from the diotribution designed into Table 1, From
Rosenberg and Dewan's® result of At, = 18008, we use

a s (&) (#)-(ﬁ) (£58) - se0s (34)

where P* = 0,08 (s tal;en Irom the same reference, The simulation
Kp.pLux = 0:311 m%/s,

Figure 0 (D-l} shows the important result that ¢(z) is esmentially unchanged
during this simulation,

[P 3

: N j\/\/\//\\’\w\/

3%

Kt}

-1

A

- A 4 1
i.a te - e 4 nao 1] 1‘I i} "a e (1131

]
ES

Via the Flux) as a Function of Time. (a=¢) Time {8 given in
terms "mix through' events, 100 ~ 8, 000 mixing event, Parts
d through | show the inltial and subsegent praofiles in order to
demon.trate that the mean slope of ¢ remains essentially cons
stant, )(The profiles are shown at intervals of 8, 000 mixing
avents

Flgure 8, Bulk D%{uulvlty, Kn (as Caleulated in the Simulation
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8.2.3 Kp.prLTA

Figure 10 (A through H) (compare the continuous case) shows the results a
sequence of layer mixing events upen an Initial ¢(e, o), which is a delta finction,

In this numerical simulation it is given by eero for all points in the range, R (of -

400 points), except lor the center point (z ), whloh was set to the maximum value
(100), At the arbitrary t KOUNT = 30.4)( 10 (30, 400 layer lormativna), and

with 360 seconds assigned to each count, KB DELTA Wo® estimated [rom Eq, (20),
The value of the peak was 3.0, having started from 100, and its (1/e) valve o
therefore 1,1, The values of the end polnts of the two Fo {one per sido) were eati-
mated from the printout, They occurred at & = point 183 and point 273, The oente’r
was located at point 200, Thus, using Az = 80 m, the average r" was detormined
tober, = (3700) meters, thus

2
Kp-pELTA * AMORONEE,TOom) * 031 m*/e 38)

which agrees with K _py oy

.

COUNT 1§ 1000

L

-7

.28

i

. F L
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6.3.3 Kp.nTR

Figure 11 (A through D) showa the sequence for the intrusion case, At
KOUNT = 14 X 103, the value of z was arbitrarily chosen to correspond to point
nunmber 81, or 81 X (80 m/pt,) = 2,08 X 103 m, from the origin, From the printout,
¢ = 0,167 at that point and time, The value of t was determined from

t » KOUNT (360) (36)
ort = 8,04 X10% s, From Eq. (31) TCIRY
ory) = 1 - 0,167 = 0, 833 (37

Uning the tables th Abramowlitz and Stegun, 12 4 e found y = 0,88, Thus, from
Eq, (24)

2
3
1 2
KB-INT * 5 oe x 100 (% ) * 0,34 m“/u (38)
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6.2.4 Ky insuL

Flgure 12 (A through G) shows the simulation for the case of the insulated slab,
At KOUNT » 4 X 107 (t » 1,44 X 107 8), a Fourler transform was obtained [rom the
simulated solution by means of a Fast Fourier transform analyais. This gave
Al(t) = (=0,381), Inserting this into Eq. (31)

. 4 _\2
Kp-insuL [ in (‘3—?33)_] (HP m> (1.441>< 107)

= 0,324 m%/e (38)
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el 2. 5 E-C:AI‘C
We now use Eq, (4). Har\q we use

at, . ‘ i

(Dewan®), Using P* » 0,08, &t + 1800, VAT « 277 m

. ,
0, 08) (371 . 2
Kp.caLc * ern'lrl‘ms'o%'l1 * 0,32 m%/n (41)

6.8 Summary of Simulation Rasults

Table 2 summarizes the abuve results, and it shows In a convincing manner
that KB' no matter which way it is estimated, glves a self-consistent reault, .

it et




Table 2, Distribution Paramaeter, KH' for Various Cases

aemcrmrar. PRR
e e = -

Kg.pLux * 031 m?/a = (8,04 x 107 ;’/Atf «1,48% 1072 (A% an)

Kp.purTa = %31 * (8,04 % 10"3) E"f/mr = 1,48 % 1073 “E/“”
KponTR  * 034 « (8,83 % 107 A¥/at, « 100 1070 (A% a0
Kg.insur = %32 « (8,30 % 10"%) A%/ at, « 1,80 107 "E’A”
Kp.caLc * %% - (8,38 % 10" A%/ Aty « 1,80 107 (a%/an)

The last column {a rendered in units of A and at, This "nondimensional" form
allows one to apply the tormalism to fluids with other stales (for example, the
ocean), Notice that only single values of & and t were used to "measure” the
spread in ench came, t being chosen arbitrarily, Obviously, more pairs could have
been used to inorease the acouracy of Ky estimates from the diffusion elfects. The
consistency ahown in Table 2 s therefore rether remarkable, and we think one
need go no further at this point to justify the assertion that the "mixing layer" Kp
ol this paper (s sell=consiatent, at least to the [{rat significant digit.

7. SUMMARY AND CONCLUSIONS

In this paper, a new diffusion parameter or "effective diffusivity” han been
proposed, which (s designed for the extremely inhomogeneous case of layered
turbulence in atratified fluide. Random occcurrence in altitude, time, and layer ,
thickneas were assumed, as well an total mixing within layera, ‘The lust pesumpe« A
tion can be relaxed, [ neceasary, as shown in Dewan, a : p
! The preaent diffusion parameter describes g process which, (n essence, (8 o .
: aort of atochastic, finlte difference simulation of the diffusion equation that is i
} presumed to oocur In the atratified lluids to be found In nature. While the basic w

assumptions remain to be verilied, it la hoped that the formaliam developed here
wlill be useful in the eatimation of vertical transport by turbulence in the stratos !
sphore and upper ocean,

g

R e e

“T'his unsumen that P* han a specific value, namely P+ « 0, 08,

s
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Appendix

Continuous Retimate of Amount of Material Per Unit Area
Passing Through Bottom of “Siab" Due to an Average Mixing
Event and Modifieation of the Entimate of Kg.caLe

Let the bottom of the slab be located at 2 - ZB‘ Let 2 designate the center
of n mixing layer, and we shall assume that the layer overlaps the location of ZB‘
The latter condition, where A s the thickness of the mixing layer, s

alz, - zpl < A (a1

L.et l-l(Z“) be the height by which the mixing layer exXtends above ZB' Then

H(Z ) » [(-9- vz - zn] A

Define M(Z ) to be the amount of materinl per unit area which passes through the
Z = ZB boundrry as a result of mixing, ‘Then

M(Z) » M(Z) = M2 ) (A3)

where l\nl i defined as the initial amount of material per unit area in the part of
the layer which {8 ubove Z“, und Mr i this amount after the mixing,
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Assuming, as in the text, that #(2Z) i3 linear and, for convenience,

¢Z)m a2 (Ad)
wherse a is constant, we have (using a a 8¢/8x)
M2, - (height of layer above Z.B) X (average initlal concentration)
Zpey
{ (g% ‘ z) 4z
(AB)

B
. H(zo) ii(i;i

Similarly
M,(zo) « (helght of layer above za) X (average final concentration)
z,+ 9 :
[ (s)

2 .
~ HZ) —°—-Q—m———— (AB)

When M(zo) {s averaged over all posaibilities consistent with Bq, (A1), we
have

zg +4
[ (e - mpz)) ez, (AT,

Zg - §

After the caloulations are carried out,

MZ) » 1}; . (%g)* (AB)*

1
mz) - L

*Thll result was first obtained by ‘T, VanZandt (private communieation),
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The estimate of Ky given as Fg, (4) in the text would thus be changed some-
what, Glven that Aty » tr/ P*, and ldentifying the flux ¥ in Bq. (3) with

WZ)

Fo -5;9- (A9)

thus, we obtain the new estimate:

-3
A 54!1’*
Kg = . (A10)
!

This differs [rom Eq. (4) by a /actor of 2/3 but, in spite of the agresment
between the simulations and Eq, (4), Eq. (A10) would be theoretically more
accurate than Eq, (4).1' Equation (A10) (s presumably the correct estimate to use
in future analysis of experin.ental data along theas lines; however, no explanation
is available at present as to why Bq, (A10) does not agree with the simulations,
whereas Eq. (4) of the text does, A Bepolnt numerical, finite=difference formula~
tion of this appendix was carried out and the result was esaentially ldentical to
Eq. (A8), This remains to be clarified,

1'Elmltkm (¢) was derived by using Mp(Z,) = 0 (see Rosenberg and Dowunt). This
means that, instead of & "mix through" procoss, there was a ""dump through"
procesn,
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